2025-05-13 01:07:10
第二階段的仿真是在***次仿真的基礎(chǔ)上,加入了高頻變壓器以及負(fù)載部分。第二階段仿真時針對整個電路的仿真,主要目的是對控制方案給以理論研究。閉環(huán)反饋控制中采用典型的PID控制模式,仿真過程通過對PID參數(shù)的調(diào)試加深對控制方案的理解,以便在后續(xù)主電路調(diào)試過程中能更有目的性的調(diào)試參數(shù)。主要針對輸出濾波電路的參數(shù)、PID閉環(huán)參數(shù)的設(shè)置以及移相控制電路的設(shè)計進(jìn)行研究。仿真電路中輸出電壓設(shè)定值為60V,采樣值和設(shè)定值作差,偏差量經(jīng)過PID環(huán)節(jié)反饋至移相控制電路。移相電路基于DQ觸發(fā)器,同一橋臂上PWM驅(qū)動脈波設(shè)置了死區(qū)時間,兩個DQ觸發(fā)器輸出四路PWM波分別驅(qū)動橋臂上四個開關(guān)管。該補(bǔ)償線圈產(chǎn)生的磁通與原邊電流產(chǎn)生的磁通大小相等。蘇州大量程電壓傳感器廠家直銷
隨著集成化和高頻化的發(fā)展,開關(guān)器件本身的功耗和發(fā)熱問題成為限制集成化和高頻化進(jìn)一步發(fā)展的瓶頸,減小開關(guān)器件自身開關(guān)損耗促使了軟開關(guān)技術(shù)的推進(jìn)。傳統(tǒng)的諧振式、多諧振技術(shù)可以實現(xiàn)部分開關(guān)器件的ZVC或ZCS,但是這類諧振存在器件應(yīng)力高、變頻控制等缺點。脈沖寬度調(diào)制(PWM)效率高、動態(tài)性能好、線性度高,但是為了實現(xiàn)開關(guān)管的軟開關(guān),須在電路中引進(jìn)輔助的器件,這增加了主電路和控制電路的復(fù)雜性。在這樣的背景下,移相全橋技術(shù)應(yīng)運而生。相較于其他的全橋電路,移相全橋充分的利用了電路自身的寄生參數(shù),在合理的控制方案下實現(xiàn)開關(guān)管的軟開關(guān)。相較于傳統(tǒng)諧振軟開關(guān)技術(shù),移相全橋變換器又具有頻率恒定、開關(guān)管應(yīng)力小、無需輔助的諧振電路?;谝陨蠈Ρ确治觯葡嗳珮蜃儞Q器作為我們磁體電源系統(tǒng)中的補(bǔ)償電源。蘇州內(nèi)阻測試儀電壓傳感器供應(yīng)商接下來,我們可以討論兩個串聯(lián)電容器的電壓劃分。
首先滯后橋臂上開關(guān)管零電壓開通時,只有諧振電感提供換流的能量。諧振電感儲能必須大于滯后橋臂上諧振電容儲能加上變壓器原邊寄生電容儲能,在實際當(dāng)中, 變壓器的原邊匝數(shù)較少, 且原邊大都用多股漆包線并繞。同時在滯后橋臂上開關(guān)管開通時,原邊電流近似為恒定,須在開關(guān)管觸發(fā)導(dǎo)通前諧振電容完成充放電?,F(xiàn)在死區(qū)時間取為1.2us,結(jié)合滯后橋臂上開關(guān)管工況,諧振電感不僅為諧振電容提供充放電的能量,還向電源反饋能量,故電流ip小于超前橋臂上開關(guān)管開通時對應(yīng)的電流,計算可得:Ip(lag)==10.6μH。結(jié)合諧振電感的參數(shù)協(xié)調(diào)確定諧振電容的值為10μH。
本項目逆變橋臂上有4個開關(guān)管,對應(yīng)需要四個**的驅(qū)動電路??蛇x用的驅(qū)動電路有很多種,以驅(qū)動電路和IGBT的連接方式可以將驅(qū)動電路分為直接驅(qū)動、隔離驅(qū)動和集成化驅(qū)動。在此我們采用集成化驅(qū)動,因為相對于分立元件構(gòu)成的驅(qū)動電路,集成化驅(qū)動電路集成度更高、速度快、抗干擾強(qiáng)、有保護(hù)功能模塊,并且也減小了設(shè)計的難度[25]。**終選用集成驅(qū)動電路M57962,如圖4-3和4-4所示為M57962L驅(qū)動電路和驅(qū)動信號放大效果圖。M57962 是 N 溝道大功率 IGBT 驅(qū)動電路,可以驅(qū)動 1200V/400A 大功率 IGBT, 采用快速型光耦合器實現(xiàn)電氣隔離,輸入輸出隔離電壓高達(dá) 2500V。電壓傳感器的輸入是電壓本身,輸出可以是模擬電壓信號、開關(guān)、可聽信號、模擬電流電平。
在實際的系統(tǒng)中,考慮到變壓器有原邊漏感的存在,實際選用的諧振電感值比計算的諧振電感值要小,工程調(diào)試中可以以計算得到的諧振電感值為基準(zhǔn),將諧振電感設(shè)計為可調(diào)電感,根據(jù)電路的實際情況調(diào)動諧振電感值來配合諧振電容完成零開通。本電路的仿真分為兩個階段,**階段仿真不納入全橋變換器變壓器的副邊,末端的負(fù)載用一個等效至原邊的電阻代替。此階段仿真主要是為了實現(xiàn)超前橋臂和滯后橋臂的所有開關(guān)管的軟開關(guān),并且通過仿真的手段觀察開關(guān)管實現(xiàn)軟開關(guān)與電路中哪些參數(shù)關(guān)系**緊密,以及探討實現(xiàn)軟開關(guān)的臨界條件。通過觀測各個開關(guān)管承受電壓、流通電流和驅(qū)動信號之間的關(guān)系,加強(qiáng)對移相全橋電路的理解,為后續(xù)的參數(shù)設(shè)置和電路調(diào)試提供理論基礎(chǔ)?;陔姽庑?yīng),在電場或電壓的作用下透過某些物質(zhì)的光會發(fā)生雙折射。寧波霍爾電壓傳感器設(shè)計標(biāo)準(zhǔn)
按測量原理來分可以分為電阻分壓器、電容分壓器、電磁式電壓互感器、電容式電壓互感器、霍爾電壓傳感器等。蘇州大量程電壓傳感器廠家直銷
為了得到高精度、可控、快速反應(yīng)的電源,首先想到的解決方案便是利用電力電子變換器。電力電子技術(shù)經(jīng)過幾十年的發(fā)展,已經(jīng)成為電力參數(shù)變換和控制的基本手段,尤其伴隨著新型電力電子器件的出現(xiàn)和發(fā)展,以及高頻化、軟開關(guān)和集成化技術(shù)的發(fā)展應(yīng)用,電力電子技術(shù)可以滿足各種類型的電源要求。直流變換器是電力電子變換器的重要的一部分, 電力電子中 DC/DC 變換的方案 也有很多。按照是否具有電氣隔離的方式分類, 直流變換器可以分為隔離型和非隔 離型兩類。隔離型的直流變換器也可以看作為是非隔離型變換器加入變壓器轉(zhuǎn)變而 來的。蘇州大量程電壓傳感器廠家直銷